
Automating Interactive Applications in a Network Environment
by
Don Libes
National Institute of Standards and Technology
Gaithersburg, MD

ABSTRACT

Many programs demand to be run interactively. Word-processors
are
good examples, but many network applications (e.g., ftp, telnet)
share
the same fault. They cannot be run non-interactively.

Expect is a software tool designed to control interactive
programs.
Expect reads a script that resembles the dialogue itself but
which may
include multiple paths through it. Expect can run any program
locally
or remotely in order to automate a task.

Expect successfully deals with interactive programs and is
particularly useful in a networked environment in which
dissimilar
machines must communicate. Expect solves the problem of "stick
the
password in the script" as well as several other long-standing
problems with traditional work-arounds in these areas. Expect
also
provides the needed support for regression testing, network and
computer load generation, and conformance testing in a networked
environment.

In practice, Expect has entirely relieved numerous computer
scientists
and network managers of tasks that previously had to be performed
by
hand. The investment in writing Expect scripts is a minimal
one-time
cost. Expect is free and in the public domain. Expect is in use
in
hundreds of companies and universities in the U.S. and overseas.

Keywords: automation; commmunication; Expect; interaction;
network;
Tcl; Tool Control Language

[End of abstract]



Footnote 1: Contribution of the U.S. Government. Not subject to
copyright.

Footnote 2: Trade names and company products are mentioned in the
text
in order to adequately specify experimental procedures and
equipment
used. In no case does such identification imply recommendation
or
endorsement by the National Institute of Standards and
Technology, nor
does it imply that the products are necessarily the best
available for
the purpose.

INTRODUCTION

Many programs are designed strictly for interactive use. We call
such
programs "unautomateable". Editors are good examples, but many
network applications (e.g., ftp, telnet) share the same
characteristic.

Traditional scripting solutions, such as shells, command
processors,
and more specialized tools such as Kermit, are significantly
limited
in capability. For example, shells are restricted to very
limited
programming, such as straight-line algorithms because they cannot
perform error checking from interactive programs. Kermit-like
programs are designed specifically for communications on
single-tasking systems and do not take advantage of local
software or
non-standard local communication interfaces.

In contrast, the research into Expect focused on the issues
related to
building a language for describing interaction. The result is a
very
general tool which surpasses older, traditional solutions.

Expect is a communication-independent system. It has a single
generic
interface for interacting with processes. Thus, Expect can make
use
of tools you have already. For example, if you have a security
system
or device driver or user interface, Expect will use it. Expect
does
not replace anything that you already have. It is simply a
flexible
and general, high-level control system.



Expect provides partial automation as well. It can automate part
of
an interaction and then let a human take over the interaction.
For
example, Expect can make all the network connections, and let the
user
type the password. Then Expect can take control again and finish
the
job. Control can be passed back and forth.

INNOVATION

Expect was the cross-product of the following three concepts:

* a standard control language (Tcl) [2],

* an appropriate set of concepts for interaction description and
their implementation in Tcl,

* the ability to manipulate other processes in a multitasking
environment.

Unlike the traditional approaches, Expect stays away from
building in
specific I/O interfaces. Instead, Expect calls upon interactive
and
non-interactive processes that already exist. Expect has
specific
support for interaction and can thus drive programs in any way
necessary.

This has several benefits:

* Expect does not need to be configured for each system.

* Expect can automatically use any I/O interface on a system.

* Expect can control multiple processes and I/O simultaneously.

For example, Expect can create a connection to a remote system
that
uses an incompatible mail system, retrieve new mail back to the
original system (or even a third system), and make it appear as
if the
two systems were compatible at a much higher level than they
really
are.

IMPLEMENTATION

This section briefly describes the implemention of Expect. A
complete
description is provided by [1].



Tcl - Tool Control Language

The Tcl core consists of control flow statements such as while,
if/then, and others. Tcl supports procedure definition,
recursion,
scoping, and similar high-level functionality. Programs may be
called
and files manipulated. Expression evaluation is provided by
primitives that manipulate the only primitive type - strings.
(Conversion to and from other types is performed automatically, a
la
SNOBOL.)

The salient features of Tcl are that it is:

* simple - It is expected that most Tcl programs will be short.

* programmable - Tcl applications are general-purpose and are not
known in advance.

* efficiently interpreted - Tcl must be able to execute commands
quickly enough that user interaction is not noticeably impeded.
(Tcl
itself is written in C.)

* internally interfaceable to other languages - Tcl must allow
one to
add new commands that work synergistically with existing Tcl
commands.

As the last bullet says, Tcl is designed to allow the addition of
new
commands. Expect adds twenty-seven commands to the Tcl language.
Tcl
is defined by [2][3]. Expect is defined by [4]. Briefly, Expect
provides:

* send/expect sequences - "expect" patterns can include regular
expressions.

* standard, high-level language - Control flow (if/then/else,
while,
etc.) allows different actions on different inputs, along with
procedure definition, built-in expression evaluation, and
execution of
arbitrary programs.

* job control - Multiple programs can be controlled at the same
time.

* user interaction - Control can be passed from scripted to
interactive
mode and vice versa at any time. The user can also be treated as
an



I/O source/sink.

Expect library

While Expect was being developed, Tcl provided a workbench with
which
to experiment. While Tcl suffices for most Expect use, it is
possible
to code directly in a compiled language. Expect comes with
interfaces
to C and C++. It is straightforward to interface to additional
languages.

Multitasking, Pseudo-ttys

Expect requires a host system be multitasking. This is necessary
in
order for Expect to start other processes to work for it (much
like a
manager coordinates subordinates). Systems such as UNIX, VMS,
and
OS/2 are multitasking, while DOS is not.

Expect communicates with other processes using a technique
commonly
referred to as "pseudo-ttys" or "virtual terminals". A
pseudo-tty is
a logical abstraction of the hardware interface required to
support
interaction with a human, such as a keyboard and screen.

Pseudo-ttys allow programs to run unchanged even though they are
not
talking to physical hardware. Operations such as clearing the
screen
are not physically performed, but are nonetheless allowed and
represented in the logical interface. Expect can thus detect
when a
program has requested or completed an I/O operation.

Combining these concepts provides the basis for Expect. A simple
application is presented in figure 1. Under the direction of a
script, Expect communicates with interactive programs as if it
were a
real person. Expect does this by internally spawning the process
to be
controlled. The I/O of the spawned process is then managed by
Expect
according to the script (figure 1a). Expect allows a person to
take
control from the script and return control at will (figure 1b).

PASTE FIGURE 1 IN HERE



Expect can also treat the real person like a process, thereby
allowing
the person to deal with a greatly simplified interaction. Any
number
of processes may be controlled. Figure 2 shows a typical
instantiation with the person being treated as a process.

PASTE FIGURE 2 IN HERE

RESULTS

This section will briefly describe some performance aspects of
Expect.

* Expect drives programs very quickly. In comparison to humans,
response is instantaneous. Actual measurements of time and
program
size are described in [1] and [5].

* Expect never forgets a step. For instance, regression testing
is
very boring for humans. Once they have done a procedure before,
they
know that most of the time they’re not going to see anything new.
It’s not surprising that they inadvertently skip tests. Expect’s
use
in regression testing is described further in [6]

* Expect maintains security. Given a password, it will not
record it
anywhere. Thus, passwords cannot be exposed. Nor will a
password be
forgotten (unless it is so directed).

In practice, most Expect programs are relatively small. Many
problems
can be solved with only five to ten lines of Expect commands.
Nonetheless, large programs are written, and the language scales
well.

Learning how to use Expect is comparable to learning how to use
any
high-level language. It is possible to code applications in a
matter
of minutes. The most difficult part of any Expect task is
getting a
clear specification of another program’s user interface. For
example,
while the Department of Defense File Transfer Protocol (FTP) is
clearly specified, its corresponding user interface is quite
vague,
and implementations vary widely.



It is difficult to describe Expect without using superlatives.
Indeed, the project has received hundreds of letters of thanks
from
national and international users. The number of notes received
is
remarkably large, particularly in view of the fact that users are
under no obligation to write to the developer since Expect is
free.

Expect can be applied to many problems [6][7], although this
paper
will only mention the narrow subset of interest to this audience.
Here are some of the Expect applications and advantages that
impact
networking and communications. All of the applications described
below have been implemented.

* Load Generation - Expect can be used to generate network or
computer
loads. This is useful in prototyping or pre-purchase network
testing.

* Quality Assurance & Conformance Testing - Expect can run two
programs simultaneously (or one against a standard) comparing
outputs
and timings for descrepancies. This is useful when verifying a
new
version of a program or interface functions the same as an old
version. Regression and conformance testing are the core of much
Expect use. See [6][8] for more detail.

* Faster, Easier Debugging - Expect can layer programmability
onto a
debugger, a network management tool, or any program. Most
programs do
not provide general program user interfaces. Expect provides a
common
programming interface to any extant tools.

* Faster Diagnostics - Expect scripts can be written to simulate
everything that a user might do - for example, opening a
connection to
an out-bound modem, going through several switches, back through
an
in-bound modem, several logins and several applications. By
testing
these sequences frequently, we learn about and fix faults well
before
users have a chance to stumble onto them.

* Better Security - Expect scripts can automate everything except
typing in passwords, allowing managers to know passwords but not
worry
about any of the technical responsibilities of them. Passwords



can be
batched, so that the passwords are entered at program initiation,
but
used much later. This works very well with all traditional
security
systems such as MIT’s Kerberos.

* Password Maintenance - An Expect script can change passwords
for a
user who has accounts on multiple machines. The user types the
password once, while Expect does the rest. This reduces the
possibility of accounts ending up with differing passwords.

* Security Testing - Expect scripts can simulate humans to test
programs that are intentionally designed to be non-interactive.
Expect scripts can simulate hackers trying numerous passwords and
techniques to break into a system.

* Network and Host Integration - If Expect runs on one system, it
can
contact another system on which to work. For example, we have
Expect
controlling VMS, Cray, and Lisp Machines from a single UNIX
workstation. Remote systems do not have to run Expect.

* Presentation-level Conversions - Writing real network protocol
drivers for non-standard protocols is expensive. It is possible
to
write Expect translators in minutes, that work in real-time.

* Localize Remote Peripherals - Expect scripts can encode
commands to
connect to remote hosts and open remote devices, providing
subsequent
access as if they were local.

PLANNED ENHANCEMENTS

Porting

Currently, Expect runs on UNIX machines. It also runs on
machines
from small platforms (Intel 386) to supercomputers (Cray). We
know of
people running it on approximately 50 different vendors’ brands
of
UNIX.

We anticipate ports to VMS, OS/2, and other multitasking
operating
systems in the near future. All of the environments already
provide
the base functionality that Expect depends upon.



Windows

Expect does not currently provide support for generalized
bitmapped
window systems. Several researchers are studying this area with
experimental versions of Expect.

Availability

Since the design and implementation of Expect was paid for by the
U.S.
government, it is in the public domain. However, the author and
NIST
would like credit if this program, documentation or portions of
them
are used. Expect may be ftp’d as pub/expect/expect.shar.Z from
ftp.cme.nist.gov. Expect will be mailed to you, if you send the
mail
message (no subject) send pub/expect/expect.shar.Z to
library@cme.nist.gov.

REFERENCES

[1] Libes, Don, "Expect: Curing Those Uncontrollable Fits of
Interaction",
paper and presentation, Proceedings of the Summer 1990 USENIX
Conference, Anaheim, California, June 11-15, 1990.

[2] Ousterhout, John, "Tcl: An Embeddable Command Language",
Proceedings
of the Winter 1990 USENIX Conference, Washington, D.C., January
22-26,
1990.

[3] Ousterhout, John, "tcl(3) - overview of tool command language
facilities", unpublished manual page, University of California at
Berkeley, January 1990.

[4] Libes, Don, "The Expect User Manual - programmatic dialogue
with
interactive programs", to appear as a NIST IR, National Institute
of
Standards and Technology, 1992.

[5] Libes, Don, "Expect: Scripts for Controlling Interactive
Processes",
Computing Systems, Vol. 4, No. 2, University of California Press
Journals, November 1991.

[6] Libes, D. "Regression Testing and Conformance Testing
Interactive



Programs", Proceedings of the Summer 1992 USENIX Conference, San
Antonio, Texas, June 12-15, 1992.

[7] Libes, Don, "Using Expect to Automate System Administration
Tasks", paper and presentation, Proceedings of the Fourth USENIX
Large
Installation Systems Administration Conference, Colorado Springs,
Colorado, October 17-19, 1990.

[8] Woodson, Brian, "Regression Testing Using Expect", Quality In
Software Conference, Santa Clara Valley Software Quality
Assocation,
June 29, 1991.


